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Abstract

In this work, we explore almost all parts of the basic concepts in the infinite sums in the subject
real analysis. Firstly, we begin our studies with finite sums, infinite unordered sums, ordered sums
of series, and a criterion for convergence. There we build some basic constructions of convergent
series then immediately we start to check series which is convergent by some simple tricks. Sec-
ondly, we study fourteen tests for convergence. We demonstrate some applications toward more
generalized tests through examples where simpler tests fail to yield results. While our main fo-
cus of this project work on advanced tests for convergence, we also illustrate connections between
the different tests. Thirdly, we then work on rearrangement, products of series, and summability
method. At the end, we summarize more on infinite sums and infinite products.
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1
Introduction

In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely
many quantities, one after the other, to a given starting quantity. The study of series is a major
part of calculus and its generalization, mathematical analysis. Series are used in most areas of
mathematics, even for studying finite structures (such as in combinatorics) through generating
functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other
quantitative disciplines such as physics, computer science, statistics and finance.

For a long time, the idea that such a potentially infinite summation could produce a finite result
was considered paradoxical. This paradox was resolved using the concept of a limit during the 17th
century. Zeno’s paradox of Achilles and the tortoise illustrates this counterintuitive property of
infinite sums: Achilles runs after a tortoise, but when he reaches the position of the tortoise at
the beginning of the race, the tortoise has reached a second position; when he reaches this second
position, the tortoise is at a third position, and so on. Zeno concluded that Achilles could never
reach the tortoise, and thus that movement does not exist. Zeno divided the race into infinitely
many sub-races, each requiring a finite amount of time, so that the total time for Achilles to catch
the tortoise is given by a series. The resolution of the paradox is that, although the series has an
infinite number of terms, it has a finite sum, which gives the time necessary for Achilles to catch
up with the tortoise.

1.1 Brief Literature Review

Development of infinite series

Greek mathematician Archimedes produced the first known summation of an infinite series
with a method that is still used in the area of calculus today. He used the method of exhaustion to
calculate the area under the arc of a parabola with the summation of an infinite series, and gave a
remarkably accurate approximation of .

In the 17th century, James Gregory worked in the new decimal system on infinite series and
published several Maclaurin series. In 1715, a general method for constructing the Taylor series
for all functions for which they exist was provided by Brook Taylor. Leonhard Euler in the 18th
century, developed the theory of hypergeometric series and g-series.

Convergence Criteria
The investigation of the validity of infinite series is considered to begin with Gauss in the 19th
century. Euler had already considered the hypergeometric series

af ala+1)B(B+1) ,
L T T )t T

on which Gauss published a memoir in 1812. It established simpler criteria of convergence, and the
questions of remainders and the range of convergence.

Cauchy (1821) insisted on strict tests of convergence; he showed that if two series are convergent
their product is not necessarily so, and with him begins the discovery of effective criteria. The

1+
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terms convergence and divergence had been introduced long before by Gregory (1668). Leonhard
Fuler and Gauss had given various criteria, and Colin Maclaurin had anticipated some of Cauchy’s
discoveries. Cauchy advanced the theory of power series by his expansion of a complex function in
such a form.

Abel (1826) in his memoir on the binomial series

m m(m — 1
corrected certain of Cauchy’s conclusions, and gave a completely scientific summation of the series
for complex values of m and x. He showed the necessity of considering the subject of continuity in
questions of convergence.

Cauchy’s methods led to special rather than general criteria, and the same may be said of Raabe
(1832), who made the first elaborate investigation of the subject, of De Morgan (from 1842), whose
logarithmic test DuBois-Reymond (1873) and Pringsheim (1889) have shown to fail within a certain
region; of Bertrand (1842), Bonnet (1843), Malmsten (1846, 1847, the latter without integration);
Stokes (1847), Paucker (1852), Chebyshev (1852), and Arndt (1853).

General criteria began with Kummer (1835), and have been studied by Eisenstein (1847), Weier-
strass in his various contributions to the theory of functions, Dini (1867), DuBois-Reymond (1873),
and many others. Pringsheim’s memoirs (1889) present the most complete general theory.

2+ .

https://en.wikipedia.org/wiki/Series (mathematics)#:~:text=If

1.2 Objectives of the Study

The objectives of this thesis work are as follows:

e Section 1,2,3,4,5: We introduce finite sums, infinite unordered sums, ordered sums, and
criterion for convergence.

e Section 6: We study various tests for convergence respected to the different form of infinite
sums.

e Section 7: We start introducing unconditional convergence, conditional convergence, and
comparison of >, a; and Y,y G-

e Section 8: We start with products of series where products of absolutely convergent series
and products of nonabsolutely convergent series. We study in a rigorous way.

o Section 9,10,11: We include summability method (Cesaro’s and Abel’s), more on infinite sums
and infinite products.

1.3 Outline of the Project Work

In section 1, we start introducing finite sums, infinite unordered sums, ordered sums, and
criterion for convergence. Furthermore, in section 2, we study tests for convergence. Moreover, we
start introducing unconditional convergence, conditional convergence, and comparison of > 2, a;
and ), ya;. After that, in section 4, we start with products of series that detail about products
of absolutely convergent series and products of nonabsolutely convergent series. Finally, we include
summability method (Cesaro’s and Abel’s), more on infinite sums and infinite products.

vii
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1.4 Preliminaries

To achieve our main objectives we have set for our work, we first have to build up all the basic
concepts needed then immediately we go ahead with our main theorems which are followed by some
useful applications, for each work.

To study deeply on infinite sums, we have to start from finite sums, cauchy criterion, and
properties of series. Then we have to work on criterion for convergence to continue testing the
convergence of infinite sums. After that we study rearrangement where we talk about uncondition
and condition of convergence. Moreover, we continue our work on products of series, summability
method, infinite products.

viii



2
INFINITE SUMS

2.1 Introduction

Literally, infinite summations appears to have been studied and used long before any devel-
opment of sequences and sequence limits. Indeed, even to form the notion of an infinite sum, it
would seem that we should already have some concept of sequences, but this is not the way things
developed. In was only by the time of Cauchy that the modern theory of infinite summation was
developed using sequence limits as a basis for the theory. We can transfer a great deal of our
expertise in sequential limits to the problem of infinite sums. Even so, in this work will show its
own character and charm. In many ways infinite sums are much more interesting and important
to analysis than sequences.

2.2 Finite Sums

There are a number of notation and a number of skills that we shall need to develop in order
to succeed at the study of infinite sums that is to come. The notations of such summations may
be novel. How best to write out a symbol indicating that some set of numbers

{ala az, as, ..., an}
has been summed? Certainly
aiy+az+az+---+ap

is too cumbersome a way of writing such sums. The following have proved to communication much

better
>

el
where [ is the set {1,2,3,...,n} or

n

E a; or Eai.

1<i<n =1

Here the Greek letter Y, corresponding to an uppercase "S", is using to indicate a sum. It is to
Leonhard Euler (1707 —1783) that we owe this sigma notation for sums (first used by him in 1755).

The usual rules of elementary arithmetic apply to finite sums. The commutative, associative,
and distributive rules assume a different look when written in Euler’s notation:

i€l i€l iel
E ca; = C E a;
i€l icl



and

<Z ai> X <Z bj> = Z Z(Iibj = Z (Z aibj> .
icl icJ icl \jeJ jeJ \iel
Each of these can be checked mainly by determining the meanings and seeing that the notation
produces the correct result.

Occasionally, in application of these ideas, one would like a simplified expression for a summa-
tion. The best known example is

- 1
Zk:1+2+3+---+n:M7

2
k=1

which is easily proved. When a sum of n terms for a general n has a simpler expression such as this
it is usual to say that it has been expressed in closed form. Novices, seeing this, usually assume
that any summation with some degree of regularity should allow a closed form expression. If not,
what can we do with a sum that cannot be simplified?

One of the simplest of sums

3

1—|—1+1+ —1-1—
2 3 n

=

k=1

does not allow any convenient formula, expressing the sum as some simple function of n. This is
typical. It is only the rarest of summations that will allow simple formulas.

Even so, there are a few special cases that should be remembered and which make our task in
some cases much easier.

Telescoping Sums. If a sum can be rewritten in the special form below, a simple computation
(canceling s1, s2, etc.) gives the following closed form:

(51 —50) + (52 — 51) + (53 — 82) + (54 — 83) + -+ + (Sp — Snt1) = Sn — S0

Example 2.2.1. For a specific example of a sum that can be handled by considering it as telescop-
ing, consider the sum

1 1 1 1 1

n
1
;k(kﬂ) T2 23 tsatas T T oo

A closed form is available since, using partial fractions, each term can be expressed as

1 1 1

k(k+1) k k+1

"~ 1 " /1 1 1
;k(lﬁ—l) Z(k k:—1> n+1

k=1

Thus

The exercises certain a number of other examples of this type.



Geometric Progressions. If the terms of a sum are in a geometric progression (i.e., if each
term is some constant factor times the previous terms), then a closed form for any such sum is

available:
1 —pntl

T W

This assumes that r # 1; if » = 1 the sum is easily seen to be just n + 1. The formula in (1) can
be proved by converting to a telescoping sum. Consider instead (1 — r) times the preceding sum:

L+rr 4 " =

(LT4+r)A+r+r2 4+ 4" ") = (L =)+ (r =1+ + (" =",

Now add this up as a telescoping sum to obtain the formula stated in (1).
Any geometric progression assumes the form

A+ Ar+Ar? 4 A" = AQ +r+r2 - )

and formula (1) is then applied.

Summation By Parts. Sums are frequently given in a form such as
n
S
k=1
for sequences {ar} and {b;}. If a formula happens to be available for

Sp=a1+ a2+ -+ an,

then there is a frequently useful way of rewriting this sum (using sop = 0 for convenience):

n

Zakbk = Z(Sk — 5p—1)by,
k=1

k=1

=s1(b1 — b2) + s2(ba —b3) + -+ - + sp—1(bp—1 — bn) + Snbn.

2.3 Infinite Unordered sums

We now pass to the study of infinite sums. We wish to interpret
>
el

for an index set I that is infinite.

To begin our study imagine that we are given a collection of numbers a; indexed over an infinite
set I (i.e., there is a function a : I — R) and we wish the sum of the totality of these numbers.
If the set I has some structure, then we can use that structure to decide how to start adding the
numbers. For example, if a is a sequence so that I = N, then we should likely start adding at the
beginning of the sequence:

ai,ay + ag,a1 +ag +az,a; +ag + as + aq, ...

and so defining the sum as the limit of this sequence of partial sums.



Another set I would suggest a different order. For example, if I = Z, then a popular method
of adding these up would be to start off:

ap,a—1 +ag +ax

a_gs+a_1+ap+ar+ao
a_3+a_o2+a_1+ay+a+ag+as,..

once again defining the sum as the limit of this sequence.
It seems that the method of summation and hence defining the meaning of the expression

S
el

for infinite sets I must depend on the nature of the set I and hence on the particular problems of
the subject one is studying. This is true to some extent. But it does not stop us from inventing a
method that will apply to all infinite sets I. We must make a definition that takes account of no
extra structure or ordering for the set I and just treats it as a set. This is called the unordered sum
and the notation ) ;. ;a; is always meant to indicate that an unordered sum is being considered.
The key is just how to pass from finite sums to infinite sums. Both of the previous examples used
the idea of taking some finite sums and then passing to a limit.

Definition 2.3.1. [i] Let I be an infinite set and a function a : I — R. Then we write

Sac
and say that the sum converges if for every e > 0 there is a finite set Iy C I so that, for every finite
set J,Ip C J C 1,

< €.

Do

ieJ

A sum that does not converge is said to diverge.

Note that we never form a sum of infinitely many terms. The definition always computes finite
sums.

Example 2.3.2. Let us show, directly from the definition, that

Z ol=il — 3.

€7

.

—N<i<N

If we first sum

by rearranging the terms into the sum
1+2027 4272+ ... 427N

we can see why the sum is likely to be 3. Let € > 0 and choose N so that 27N < ¢/4. From the
formula for a finite geometric progression we have

Z 27l 3l =2|@ ' + 272+ +27V) — 1] < 2027V) < /2.
—N<i<N



Also, if J CZ with J finite geometric progression, then

> ol < 2Ny <e/2

jeJ
again from the formula for a finite geometric progression. Let
Iy={i€Z:—-N<i<N}
If In C J C Z with J finite then

Yol 3

icJ

_ Z o-lil _ 3| 4 Z 9=l ~ ¢

—N<i<N 1€J\Ip

as required.

2.3.1 Cauchy Criterion

In most theories of convergence one asks for a necessary and sufficient condition for convergence.
Here is the Cauchy criterion for sums.

Theorem 2.3.3. [1] A necessary and sufficient condition that the sum ;. ;a; converges is that
for every € > 0 there is a finite set Iy so that

S

ieJ

<€

for every finite set J C I that contains no element of Iy (i.e., for all finite sets J C I\Ip).

Proof. As usual in Cauchy criterion proofs, one direction is easy to prove.
Suppose that ), ;a; = C converges. Then for every e > 0 there is a finite set Iy so that

Zai—C

1eK

<€/2

for every finite set Ip C K C I. Let J C I\Ip and consider taking a sum over K = Iy U J. Then

Z —C| <¢€/2

i€lpUJ

and
Z —C| < €/2.
i€lp

By subtracting these two inequalities and remembering that

Z aizzai+zai

i€lgUJ ieJ i€l



(since Iy and J are disjoint) we obtain

Zai < €.

ieJ

This is exactly the Cauchy criterion.
Conversely, suppose that the sum does satisfy the Cauchy criterion. Then, applying that crite-
rion to e = 1,1/2,1/3, ... we can choose a sequence of finite sets {I,,} so that

D a

e

<1/n

for every finite set J C I\I,. We can arrange our choices to make
LclLclsC..

so that the sequence of sets is increasing.
Let

Then for any m > n,
len — em| = Z a;| < 1/n.
1€lm\In

It follows from this that {c,} is a Cauchy sequence of real numbers and hence converges to some
real number c¢. Let € > 0 and choose N so that N > 2/e. Then, for any n > N and any finite set
J with Iy C J C I,

E a; — C

icJ

< Zai—cN +leny — ¢l + Z a;| <0+2/N <e.
i€ln i€J\In

By definition, then,

E a; = C

i€l

and the theorem is proved. O

All But Countably Many Terms in a Convergent Sum Are Nonzero. Our next theorem
shows that having "too many"' numbers to add up causes problems. If the set I is not countable
then most of the a; that we are to add up should be zero if the sum is to exist. This shows too that
theory of sums is in an essential way limited to taking sums over countable sets. It is notationally
possible to have a sum

> @)

z€[0,1]
but that sum cannot be defined unless f(z) is mostly zero with only countably many exceptions.

Theorem 2.3.4. Suppose that ), ;a; converges. Then a; = 0 for a; = 0 for all i € I except for
a countable subset of I.



Proof. We know for any convergent sum there is a positive integer M so that all the sums

Zai SM

i€lp

for any finite set Iy C I. Let m be an integer. We ask how many elements a; are there such that
a; > 1/m? It is easy to see that there are at most Mm of them since if there oure any more our
sum would exceed M. Similarly, there are at most Mm terms such that —a; > 1/m. Thus each
element of {a; : ¢ € I'} that is not zero can be given a "rank" m depending on whether

I/m<a; <1/(m—1) or —a;<1/(m—1).

As there are only finitely many elements at each rank, thin gives us a method for listing all of the
nonzero elements in {a; : i € I} and so this set is countable. O

2.4 Ordered Sums: Series

For the vast majority of applications, one wished to sum not an arbitrary collection of numbers
but most commonly some sequence of numbers:

a1 +ag +as—+ ...

The set N of natural numbers has an order structure, and it is not in our best interests to ignore
that order since that is the order in which the sequence is presented to us.
The most compelling way to add up a sequence of numbers is to begin accumulating:

ai,a1 + az,a1 +az +as, a1 +az + as + agq, ...

and to define the sum as the limit of this sequence. This is what we shall do.
If we studied Section 3.3 on unordered summation we should also compare this "ordered" method
with the unordered method. The ordered sum of a sequence is called a series and the notation

[e.e]
>
k=1

is used exclusively for this notion.

Definition 2.4.1. Let {a;} be a sequence of real numbers. Then we write

o0
E ap = C
k=1

and say that the series converges if the sequence
n
Sp = Z Qg
k=1

(called the sequence of partial sums of the series) converge to c. If the series does not converge it
is said to be divergent.

The definition reduces the study of series to the study of sequence.



2.4.1 Properties

[6)The following short harvest of theorems we obtain directly from our sequence theory. The
convergence or divergence of a series Y, a; depends on the convergence or divergence of the

sequence of partial sums
n
Sp = E ag
k=1

and the value of the series is the limit of the sequence.
Theorem 2.4.2. If a series Y o, a converges, then the sum is unique.

Theorem 2.4.3. If both series Y oo ar and > ;- by converge, then so too does the series

> (ak + br)

k=1

and

D (an+bp) = ar+ Y by
k=1 k=1 k=1

Theorem 2.4.4. If the series Y -, a converges, then so too does the series > - cay for any

real number ¢ and
o0 oo
Z cap = C Z Q..
k=1 k=1

Theorem 2.4.5. If both series Zzozl ar and Zzozl by converge and ap < by for each k, then

o0 o0

S h

k=1 k=1
Theorem 2.4.6. Let M > 1 be any integer. Then the series

00
Zak:a1+a2+a3+a4+...
k=1

converges if and only if the series

o0

Z aM+k = 0M+1 + apm+2 +ap+3 + aprva + -
k=1

COnverges.

Note. If we call 37 °a; a "tail" for the series > 7" a;, then we can say that this last theorem
asserts that it is the behavior of the tail that determines the convergence or divergence of the series.
Thus in questions of convergence we can easily ignore the first part of the series, however many
terms we like. Naturally, the actual sum of the series will depend on having all the terms.



2.4.2 Special Series

Telescoping Series Any series for which we can find a closed form for the partial sums we
should probably be able to handle by sequence methods. Telescoping series are the easiest to deal
with.

If the sequence of partial sums of a series can be computed in some closed form {s,}, then the
series can be rewritten in the telescoping form

(s1) + (s2 —s1) + (s3 —s2) + (84 —83) + -+ (Sp — Sp—1)-..
and the series studied by means of the sequence {s,}.

Example 2.4.7. Consider the series

> 1 >~ /1 1 1
_— = _— = 1' 1_ :1
z::k(k:Jrl) ;(1% k+1> nl—r>n00< n+1>

k=1

with an easily computable sequence of partial sums.

Do not be too encouraged by the apparent ease of the method illustrated by the example. In
practice we can hardly ever do anything but make a crude estimate on the size of the partial sums.
An exact expression, as we have here, would be rarely available. Even so, it is entertaining and
instructive to handle a number of series by such a method.

Geometric Series Geometric series from another convenient class of series that we can handle
simply by sequence methods. From the elementary formula

1— n+1
Lhr+r? 4" = I (r#1)

1—r
we see immediately that the study of such a series reduces to the computation of the limit

1 — ot 1
lim =
n—oo 1 —7 1—7r

which is valid for —1 < r < 1 (which is usually expressed as |r| < 1) and invalid for all other values
of r. Thus, for |r| < 1 the series

o0
k—1 2
_1 D 2
kglr +r+rf+ 1= (2)

and is convergent and for |r| > 1 the series diverges. It is well worthwhile to memorize this fact
and formula (2) for the sum of the series.

Harmonic Series As a first taste of an elementary looking series that presents a new challenge
to our methods, consider the series

Sl
E 2 3 ’
k=1

which is called the harmonic series. Let us show that this series diverge.



This series has no closed form for the sequence of partial sum {s,} and so there seems no
hope of merely computing lim,_,~ s, to obtain convergence/divergence of the harmonic series.
But we can make estimates on the size of s,, even if we cannot compute it directly. The sequence
of partial sums increases at each step, and if we watch only at the step 1,2,4,8,... and make a
rough loour estimate of s, s9, s4, Sg, ... we see that son > 1+ n/2 for all n. From this we see that
lim,,_,+ Sp, = 00 and so the series diverges.

Alternating Harmonic Series A variant on the harmonic series presents immediately a new
challenge. Consider the series

o

1 1 1 1
S Ve
Pyl dil L

which is called the alternating harmonic series.

The reason why this presents a different challenge is that the sequence of partial sums is no
longer increasing. Thus estimates as to how big that sequence get may be of no help. We can see
that the sequence is bounded, but that does not imply convergence for a non monotonic sequence.
Once again, we have no closed form for the partial sums so that a routine computation of a sequence
limit is not available.

By computing the partial sums sg, s4, Sg, ... we see that the subsequence {ss,} is increasing. By
computing the partial sums s, s2, s5, ... we see that the subsequence {ss,_1} is decreasing. A few
more observations show us that

1/2=50<84<86<--<85<83<8=1. (3)
Our theory of sequences now allows us to assert that both limits

lim s9, and lim s9,_1
n—oo n—-oo

exist. Finally, since

Son — San—1 = — — 0
2n
we can conclude that lim,,__, s, exists. It is somewhere between % and 1 because of the inequal-
ities (3) but exactly what it is would take much further analysis. Thus we have proved that the

alternating harmonic series converges (which is in contrast to the divergence of the harmonic series).

p-harmonic series The series

for any parameter 0 < p < oo is called the p-harmonic series. The methods we have used in the
study of the harmonic series can be easily adapted to handle this series. As a first observation note

that if 0 < p < 1, then
1 1

— > -,
kP~ k
Thus the p-harmonic series for 0 < p < 1 is large than the harmonic series, small enough it turns
out that the series converges. To show this we can group the terms in the same manner as before
for the harmonic series and obtain
] 1 1 1 1 1 1 1 1
+ [2p+3p} + [4p+5p+6p+7p} + {81’+‘.'+Zl5p] +

10



<14 2 n 4 n 8 < 1

- 2p  4p & — 1-21-»p
since we recognize the letter series as a convergent geometric series with ratio 2'=?. In this way we
obtain an upper bound for the partial sums of the series

1
>
k=1
for all p > 1. Since the partial sums are increasing and bounded above, the series must converge.

Size of the Terms It should seem apparent from the examples we have seen that a convergent
series must have ultimately small terms. If Zzozl ag converges, then it seems that a; must tend to
0 as k gets large. Certainly, for the geometric series that idea precisely described the situation:

o
>
k=1

converges if |r| < 1, which is exactly when the terms tend to zero and diverges when |r| > 1, which
is exactly when the terms do not tend to zero.

A reasonable conjecture might be that this is always the situation: A series > 77 | ai converges
if and only if a — 0 as k — oco. But we have already seen the harmonic series diverges even
though its terms do get small; they simply don’t get small fast enough. Thus the correct observation
is simple and limited.

oo
If Z ap ~converges, then ap — 0 as k — oo.
k=1
To check this is easy. If {s,} is the sequence of partial sums of a convergent series > ;- ap = C,

then

lim a, = lim (s, —sp—1)= lim s, — lim s,.1=C—-C=0.
n—oo n—o0 n—oo n——oo

The converse, as we just noted, is false. To obtain convergence of the series it is not enough to
know that the terms tend to zero. We shall see, though, that many of the tests that follow discuss
the rate at which the terms tend to zero.

2.5 Ciriterion for Convergence

How do we determine the convergence or divergence of a series? The meaning of convergence or
divergence is directly given in terms of the sequence of partial sums. But usually it is very difficult
to say much about that sequence. Certainly we hardly ever get a closed form for the partial sums.

For a successful theory of series we need some criteria that will enable us to assert the con-
vergence or divergence of a series without much bothering with an intimate acquaintance with the
sequence of partial sums. The following material begins the development of these criteria.

2.5.1 Boundedness Criterion

If a series Y, aj consists entirely of nonnegative terms, then it is clear that the sequence of
partial sums forms a monotonic sequence. It is strictly increasing if all terms are positive.

We have a well-established fundamental principle for the investigation of all monotonic se-
quences:

11



A monotonic sequence is convergent if and only if it is bounded.

Applied to the study of series, this principle says that a series > - aj consisting entirely of
nonnegative terms will converge if the sequence of partial sums is bounded and will diverge if the
sequence of partial sums is unbounded.

This reduce the study of the convergence or divergence behavior of such series to inequality
problems:
Is there or is there not a number M so that

n
Sp = Z ap < M
k=1
for all integers n?

This is both good news and bad. Theoretically it means that convergence problems for this
special class of series reduce to another problem: one of boundedness. That is good news, reducing
an apparently difficult problem to one we already understand. The bad news is that inequality
problems may still be difficult.

Note. A word of warning. The boundedness of the partial sums of a series is not of as great
an interest for series where the terms can be both positive and negative. For such series the
boundedness of the partial sums does not guarantee convergence.

2.5.2 Cauchy Criterion

One of our main theoretical tools in the study of convergent sequences is the Cauchy criterion
describing (albeit somewhat technically) a necessary and sufficient condition for a sequence to be
convergent.

If we translate that criterion to the language of series we shall then have a necessary and
sufficient condition for a series to be convergent. Again it is rather technical and mostly useful in
developing a theory rather than in testing specific series. The translation is nearly immediate.

Definition 2.5.1. The series -
>
k=1

is said to satisfy the Cauchy criterion for convergence provided that for every e > 0 there is an
integer N so that all of the finite sums

<€

m
D> a
k=n

forany N <n <m < oco.
Now we have a principle that can be applied in many theoretical situations:
A series Y ;2 ay, converges if and only if it satisfies the Cauchy criterion for convergence.

Note. It may be useful to think of this conceptually. The criterion asserts that convergence is
equivalent to the fact that blocks of terms



added up and taken from far on in the series must be small. Loosely we might describe this by
saying that a convergent series has a "small tail."
Note too that if the series converges, then this criterion implies that for every € > 0 there is an

integer N so that
o0
>
k=n

<€

for every n > N.

2.5.3 Absolute Convergence

If a series consists of nonnegative terms only, then we can obtain convergence or divergence
by estimating the size of the partial sums. If the partial sums remain bounded, then the series
converges, if not, the series diverges.

No such conclusion can be made for a series )~ ;| ai of positive and negative numbers. Bound-
edness of the partial sums does not allow us to conclude anything about convergence or divergence
since the sequence of partial sums would not be monotonic. What we can do is ask whether there
is any relation between the two series

oo oo
Z ap and Z |a|
k=1 k=1

where the letter series has had the negative signs stripped from it. We shall see that convergence
of the series of absolute values ensures convergence of the original series. Divergence of the series
of absolute values gives, however no information.

This gives us a useful test that will prove the convergence of a series > - ; a by investigating
instead the related series > ;- ; |ai| without the negative signs.

Theorem 2.5.2. If the series Y, |ai| converges, then so too does the series y po | ay.

Proof. The proof takes two applications of the Cauchy criterion. If Y, |aj| converges, then for
every € > 0 there is an integer IV so that all of the finite sums

m
> larl <€
k=n

for any N <n < m < oo. But then

m m
Zak < Z|ak| < €.
k=n k=n

It follows, by the Cauchy criterion applied to the series ).~ ax, that this series is convergent. [

Note. Note that there is no claim in the statement of this theorem that the two series have
the same sum, just that the convergence of one implies the convergence of the other.

For theoretical reasons it is important to know when the series Y, |ag| of absolute values
converges. Such series are "more" than convergent. There are convergent in a way that allows more
manipulations than would otherwise be available. They can be thought of as more robust; a series
that converges, but whose absolute series does not converge is in some ways fragile. This leads to
the following definitions.

13



Definition 2.5.3. A series Y p-; ax s said to be absolutely convergent if the related series > po  |ak]
converges.

Definition 2.5.4. A series Y, |ak| is said to be nonabsolutely convergent if the series Y poq ax
converges but the series Y oo |ax| diverges.

Note that every absolutely convergent series is also convergent. We think of it as "more than
convergent." Fortunately, the terminology preserves the meaning even though the "absolutely" refers
to the absolute value, not to any other implied meaning. This play no words would not be available
on all languages.

Example 2.5.5. Using this terminology, applied to series we have already studied, we can know
assert the following:

Any geometric series 1 +1 412 413 4 ...
and the alternating harmonic series 1 —

s absolutely convergent if |r| < 1 and divergent if |r| > 1.

i
1,1 1
5+ 3 — 7. 8 non absolutely convergent.

2.6 Tests for Convergence

[@]In many investigations and applications of series it is important to recognize that a given
series converges, converges absolutely, or diverges. Frequently the sum of the series is not of much
interest, just the convergence behavior. Over the years a battery of tests have been developed to
make this task easier.

There are only a few basic principles that we can use to check convergence or divergence and we
have already discussed these in Section 2.5. One of the most basic is that a series of nonnegative
terms is convergent if and only if the sequence of partial sums is bounded. Most of the tests in the
sequel are just clever ways of checking that the partial sums are bounded without having to do the
computations involved in finding that upper bound.

2.6.1 Trivial Test

The first test is just an observation that we have already made about series: If a series > - ;| ag
converges, then ap — 0. We turn this into a divergence test. For example, some novices will
worry for a long time over a series such as

=1

applying a battery of tests to it to determine convergence. The simplest way to see that this series
diverges is to note that the terms tend to 1 as k — oo. Perhaps this is the first thing that should
be considered for any series. If the terms do not get small there is no point puzzling whether the
series converges. It does not.

(Trivial Test) If the terms of the series Y .- ; do not converge to 0, then the series diverges.

Proof. We have already proved this, but let us prove it now as a special case of the Cauchy criterion.
For all € > 0 there is an N so that
n
> ar
k=n

for all n > N and so, by definition, ap — 0. [

lan| = <e€

14



2.6.2 Direct Comparison Tests

A series 77, aj with all terms nonnegative can be handled by estimating the size of the par-
tial sums. Rather than making a direct estimate it is sometimes easier to find a bigger series that
converges. This larger series provides an upper bound for our series without the need to compute
one ourselves.

Note. Make sure to apply these tests only for series with nonnegative terms since, for arbitrary
series, this information is useless.

(Direct Comparison Test I) Suppose that the terms of the series > ;- | aj are each smaller
than the corresponding terms of the series > 72 by; that is, that

0 <ag < b
for all k. If the larger series converges, then so does the smaller series.

Proof. If 0 < a < by, for all k, then
n n (o)
OIS SIS I8
k=1 k=1 k=1
Thus the number B = ) 72, by, is an upper bound for the sequence of partial sums of the series

> opeq ag. It follows that Y77 | a must converge. O

Note. In applying this and subsequent tests that demand that all terms of a series satisfy some
requirement, we should remember that convergence and divergence of a series y - | a depends
only on the behavior of ay for large values of k. Thus this test (and many others) could be refor-
mulated so as to apply only for k£ greater than some integer N.

(Direct Comparison Test II) Suppose that the terms of the series Y p-; aj are each larger
than the corresponding terms of the series > ;2 cx; that is, that

0<crp<ag
for all k. If the smaller series diverges, then so does the larger series.

Proof. This follows from Test 3.19 since if the larger series did not diverge, then it must converge
and so too must the smaller series. O

Here are two examples illustrating how these tests may be used.

Example 2.6.1. Consider the series

i k+5
k:1k3+k2+k+1‘

While the partial sums might seem hard to estimate at first, a fast glance suggests that the terms
(crudely) are similar to 1/k? for large values of k and we know that the series Y peq 1/k? converges.

Note that
k+5 1+5/k < C

B+ k2 +k+1 K21+ 1/k+1/k2+1/k3) — k2

15



for some choice of C (e.g., C = 6 will work). We now claim that our given series converges by a
direct comparison with the convergent series Y ney C/k?. (This is a p-harmonic series with p = 2.)

i [ k+5
— ErEk+1
Again, a fast glance suggests that the terms (crudely) are similar to 1/v/k for large values of k and
we know that the series Y 5> 1/vk diverges. Note that

k+5 1+5/k . C
+k+1 k(1+1/k+1/k%) ~ k

Example 2.6.2. Consider the series

for some choice of C (e.g., C = % will work). We now claim that our given series diverges by
a direct comparison with the divergent series y p- VC/Vk. (This is a p-harmonic series with

p=1/2.)

The examples show both advantages and disadvantages to the method. We must invent the
series that is to be compared and we must do some amount of inequality work to show that
comparison. The next tests replace the inequality work with a limit operation, which is occasionally
easier to perform.

2.6.3 Limit Comparison Tests

We have seen that a series Y p-; a; with all terms nonnegative can be handled by comparing
with a larger convergent series or a smaller divergent series. Rather than check all the terms of the
two series being compared, it is convenient sometimes to have this checked automatically by the
computation of a limit. In this section, since the tests involve a fraction, we must be sure not only
that all terms are nonnegative, but also that we have not divided by zero.

(Limit Comparison Test I) Let each a; > 0 and b, > 0. If the terms of the series Y ;- ay
can be compared to the terms of the series ).~ by by computing

and if the latter series converges, then so does the former series.

Proof. The proof is easy. If the stated limit exists and is finite then there are numbers M and N
so that

W g
bk<

for all K > N. This shows that ay < Mbg for all & > N. Consequently, applying the direct

comparison test, we find that the series > 7 y ax converges by comparison with the convergent
series Y oo Mby,. O

(Limit Comparison Test II) Let each a; > 0 and ¢, > 0. If the terms of the series )7 a
can be compared to the terms of the series Y -, ¢, by computing

. a
lim =% >0
k—o0 CL,

and if the latter series diverges, then so does the original series.

16



Proof. Since the limit exists and is not zero there are numbers € > 0 and N so that
a
Ll > €
Ck
for all kK > N. This shows that, for all K > N,
aj, > €cg,
O
Consequently, by the direct comparison test the series > 72 \ aj diverges by comparison with
the divergent series Y po \ €cy.

Example 2.6.3. We look again at the series
i k+5
R+ k1

comparing it, as before, to the convergent series y oo, 1/k%. This now requires computing the limit

k*(k +5)
lim ,
k—soo k3 + k2 4+ k+1

which elementary calculus arguments show is 1. Since it is not infinite, the original series can now
be claimed to converge by a limit comparison.

Example 2.6.4. Again, consider the series
i k+5
=V E+E+1
by comparing with the divergent series Y po 1/ Vk. We are required to compute the limit

k+5
K2+ k+1
which elementary calculus arguments show is 1. Since it is not zero, the original series can now be
claimed to diverge by a limit comparison.

lim Vk
k—o0

2.6.4 Ratio Comparison Test

Again we wish to compare two series Y po; ar and Y _p-; by, composed of positive terms. Rather
than directly comparing the size of the terms we compare the ratios of the terms. The inspiration
for this test rests on attempts to compare directly a series with a convergent geometric series. If
> pe by is a geometric series with common ratio r, then evidently

bky1
by,
This suggests that perhaps a comparison of ratios of successive terms would indicate how fast a
series might be converging. (Ratio Comparison Test) If the ratios satisfy
W1 _ Drt

ap — bk
for all k (or just for all k sufficiently large) and the series Y - ; by, with the larger ratio is convergent,
then the series Y, ay is also convergent.

17



Proof. As usual, we assume all terms are positive in both series. If the ratios satisfy

Akt br+1

ap — b
for £ > N, then they also satisfy

ak+1 < ag

brp1 — by

which means that the sequence {ay/bi} is decreasing for k > N. In particular, that sequence is
bounded above, say by C, and so
Qg < C bk.

Thus an application of the direct comparison test shows that the series Y 7, aj converges. O

2.6.5 d’Alembert’s Ratio Test

The ratio comparison test requires selecting a series for comparison. Often a geometric series
POy r* for some 0 < r < 1 may be used. How do we compute a number r that will work? We
would wish to use by = r* with a choice of r so that

a b r
k1 Okt1

= =r.
ar b rk

One useful and easy way to find whether there will be such an r is to compute the limit of the ratios.

(Ratio Test) If terms of the series ;- aj are all positive and the ratios satisfy

. Ap41
lim 1
k—oc0 aQp

then the series )7~ aj, is convergent.

Proof. The proof is easy. If
i Ak+1
im ——

k—oc0 QA

<1,

then there is a number 5 < 1 so that
a
ak

for all sufficiently large k. Thus the series ) -, converges by the ratio comparison test applied to
the convergent geometric series Y po B*. O

Note. The ratio test can also be pushed to give a divergence ansour: If

lim 25+l S (4)

k—oc0 Qg

then the series > 72 | ay, is divergent. But it is best to downplay this test or we might think it gives
an ansour as useful as the convergence test. From (4) it follows that there must be an N and f so

that
Ak41

ag

>06>1

for all K > N. Then
an+1 > Ban,

18



2
ant2 > Bani1 > [an,

and
an43 > Bani2 > 53@\1-

We see that the terms ay, of the series are growing large at a geometric rate. Not only is the series
diverging, but it is diverging in a dramatic way.
We can summarize how this test is best applied. If terms of the series ).~ aj are all positive,

compute
. A+1
lim I
k—o0 Qf

1. If L < 1, then the series 72, aj, is convergent.
2. If L > 1, then the series > ;- aj, is divergent; moreover, the terms s; — oo.
3. If L =1, then the series Y ,-, may diverge or converge, the test being inconclusive.

Example 2.6.5. The series

Nk
—~|—~
0o | o
Zi=

k=0

is particularly suited for an application of the ratio test since the ratio is easily computed and a
limit taken: If we write aj, = (k!)?/(2k)!, then

aen R+ DDk (k+1)? 1

= — .
ag (2k + 2)!(k!)? (2k+2)(2k+ 1) 4
Consequently, this is a convergent series. More than that, it is converging faster than any geometric

series
00 k
3 (1 ; )
4
=0

k

for any positive €.

2.6.6 Cauchys Root Test

There is yet another way to achieve a comparison with a convergent geometric series. We
suspect that a series >~ ai can be compared to some geometric series Y oo r* but do not know
how to compute the value of r that might work. The limiting values of the ratios

Ak+1
ag

provide one way of determining what r might work but often are difficult to compute. Instead we
recognize that a comparison of the form

ap < Crk

would mean that

Yar < VCr.

For large k the term {/C is close to 1, and this motivates our next test, usually attributed to Cauchy.
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(Root Test) If terms of the series > ;- ; aj are all nonnegative and if the roots satisfy
lim ap <1,
k— o0
then that series converges.

Proof. This is almost trivial. If
(ap)/* < B <1

for all kK > N, then
ap < 6k

and so Y po, aj converges by direct comparison with the convergent geometric series Y oo ; gk O

Again we can summarize how this test is best applied. The conclusions are nearly identical
with those for the ratio test. Compute

lim (az)Y* = L.
k—00

1. If L < 1, then the series > -, aj is convergent.
2. If L > 1, then the series Y ;- aj is divergent; moreover, the terms a; — oco.
3. If L =1, then the series Y - ; a; may diverge or converge, the test being inconclusive.

Example 2.6.6. We found the series

|
— (2k)!
to be handled easily by the ratio test. It would be extremely unpleasant to attempt a direct compu-
tation using the root test. On the other hand, the series

o0
Zkzmk =x+ 222+ 323 + 42t + ...
k=0

for £ > 0 can be handled by either of these tests. we should try the ratio test while we try the root
test: Uk
lim (k:xk> / = lim Vkzr=z
k—> o0 k— o0
and so convergence can be claimed for all 0 < x < 1 and divergence for all x > 1. The case x =1 is
inconclusive for the root test, but the trivial test shows instantly that the series diverges for x = 1.

2.6.7 Cauchy’s Condensation Test

Occasionally a method that is used to study a specific series can be generalized into a useful
test. Recall that in studying the sequence of partial sums of the harmonic series it was convenient
to watch only at the steps 1,2,4,8, ... and make a rough loour estimate. The reason this worked
was simply that the terms in the harmonic series decrease and so estimates of s1, s9, 54, sg, ... oure
easy to obtain using just that fact. This turns quickly into a general test.
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(Cauchy’s Condensation Test) If the terms of a series Y 7~ ; a, are nonnegative and decrease
monotonically to zero, then that series con- verges if and only if the related series

[e.e]
E 2‘7 A9j
j=1
converges.

Proof. Since all terms are nonnegative, we need only compare the size of the partial sums of the
two series. Computing first the sum of 2P*1 — 1 terms of the original series, we have

a +(a2—|—a3) +~-+(a2p + agr 41 +"'+a2p+11)

<aj+2az+---+2Pag.

And, with the inequality sign in the opposite direction, we compute the sum of 2P terms of the
original series to obtain

ai +ag + (a3 + as) + -+ + (age-141 + agp—149 + - + agp)

1
> §(a1+2a2+---+2pa2p).

If either series has a bounded sequence of partial sums so too then does the other series. Thus both
converge or else both diverge. O

Example 2.6.7. Let us use this test to study the p-harmonic series:
>
kp
k=1
for p > 0. The terms decrease to zero and so the convergence of this series is equivalent to the

convergence of the series
oo ) 1 P
VA
> ()
j=1
o0
Z(Ql—p)j )

J=1

and this series is a geometric series

This converges precisely when 2P < 1 or p > 1 and diverges when 2 > 1 or p < 1. Thus we know
exactly the convergence behavior of the p-harmonic series for all values of p. (For p < 0 we have
divergence just by the trivial test.)

It is worth deriving a simple test from the Cauchy condensation test as a corollary. This is an
improvement on the trivial test. The trivial test requires that limy__ .. kar = 0 for a convergent
series > ;7 ; ap. This next test, which is due to Abel, shows that slightly more can be said if the
terms form a monotonic sequence. The sequence {a;} must go to zero faster than {1/k}.

Corollary 2.6.8. If the terms of a convergent series > ;- | aj, decrease monotonically, then

lim kak = 0.
k— o0
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Proof. By the Cauchy condensation test we know that

lim 27ay; = 0.
J—>00

If 27 < k < 271 then aj < ay; and so
kay < 2(20aq;),
which is small for large j. Thus kar — 0 as required. 0

2.6.8 Integral Test

To determine the convergence of a series Zzozl aj, of nonnegative terms it is often necessary to
make some kind of estimate on the size of the sequence of partial sums. Most of our tests have done
this automatically, saving us the labor of computing such estimates. Sometimes those estimates can
be obtained by calculus methods. The integral test allows us to estimate the partial sums >";_; f(k)
by computing instead fln f(z) in certain circumstances. This is more than a convenience; it also
shows a close relation between series and infinite integrals, which is of much importance in analysis.

(Integral Test) Let f be a nonnegative decreasing function on [1,00) such that the integral
fIX f(z)dz can be computed for all X > 1. If

lim /X f(z)dx < 00
1

X—00

exists, then the series > "= | f(k) converges. If

X
lim /1 f(z)dz = oo,

X—00
then the series -, diverges.

Proof. Since the function f is decreasing we must have

k+1 k
/k f(x)dz < f(k) < f(z)dx.

k—1

Applying these inequalities for & = 2, 3,4, ... we obtain
n+1 n n
[ t@a Y sw < s+ [ e @
k=1

The series converges if and only if the partial sums are bounded. But we see from the inequalities
(5) that if the limit of the integral is finite, then these partial sums are bounded. If the limit of the
integral is infinite, then these partial sums are unbounded. ]

Note. The convergence of the integral yields the convergence of the series. There is no claim
that the sum of the series >_p”; f(k) and the value of the infinite integral [ f(x)dx are the same.
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Example 2.6.9. According to this test the harmonic series Y peq % can be studied by computing
X
lim — = lim log X = .
X—00 J1 x X—ro0

For the same reasons the p-harmonic series
1
2w
k=1
for p > 1 can be studied by computing

. X dx . 1 1 1
lim — = lim 1-— = .
X—o0 J1 P X*>oop—1 Xr-1 p—].

In both cases we obtain the same conclusion as before. The harmonic series diverges and, forp > 1,
the p-harmonic series converges.

2.6.9 Kummer’s Tests

The ratio test requires merely taking the limit of the ratios

ag+1
ag

but often fails. We know that if this tends to 1, then the ratio test says nothing about the
convergence or divergence of the series Y 7o | ay.

Kummer’s tests provide a collection of ratio tests that can be designed by taking different choices
of sequence {Dy}. The choices Dy = 1, Dy = k and Dy, = klnk are used in the following tests.
Ernst Eduard Kummer (18101893) is probably most famous for his contributions to the study of
Fermat’s last theorem; his tests arose in his study of hypergeometric series.

(Kummer’s Tests) The series -, a; can be tested by the following criteria. Let {Dj}
denote any sequence of positive numbers and compute

ay

k—o00

L= lim inf [Dk — Dk-s—l] .

ak+1
If L > 0 the series Y 7, ay converges. On the other hand, if

aj

[Dk - Dk+1} <0

ak+1
for all sufficiently large k and if the series

s L
=1k

diverges, then the series > ;7 | aj diverges.



Proof. If L > 0, then we can choose a positive number o« < L. By the definition of a lim inf this
means there must exist an integer N so that for all K > N,

ag

a < |:Dk — Dk+1:| .

k41
Rewriting this, we find that
g4 < Dyay, — Dk+1ak+1.

We can write this inequality for k = N, N + 1, N + 2,...N + p to obtain
aap+1 < Dyany — Dytian+1

aagi2 < Dyyranys — Dyyeanyo

and so on. Adding these (note the telescoping sums), we find that
alayi1 +any2 + -+ anipi1)

< Dnyyi1any1Dniprianipr1 < Dyyiania.

(The final inequality just uses the fact that all the terms here are positive.)

From this inequality we can determine that the partial sums of the series Y - ; ax are bounded.
By our usual criterion, this proves that this series converges.

The second part of the theorem requires us to establish divergence. Suppose now that

ag

Dy, —Dp1 <0

Ak41

for all £k > N. Then
Drag < Dgyrag41-

Thus the sequence {Dygay} is increasing after £ = N. In particular,
Dyay, > C

for some C and all £ > N and so

It follows by a direct comparison with the divergent series » - C'/ Dy, that our series also diverges. [

Note. In practice, for the divergence part of the test, it may be easier to compute

L= lim sup [Dk il —Dk+1} .
k— o0 Akl
If L < 0, then we would know that
[Dk 2 —Dk+1} <0
Ak+1

for all sufficiently large k and so, if the series Y oo Dik diverges, then the series Y p- | aj diverges.
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Example 2.6.10. What is Kummer’s test if the sequence used is the simplest possible Dy, =1 for
all k2 In this case it is simply the ratio test. For example, suppose that

. Qk+1
lim *
k—oc0 Qg

Then, replacing Dy, = 1, we have

lim [Dk il —Dkﬂ} — lim {a’“ —1]:1—1.

k—00 Ag+1 k—00 | Qa1 r

Thus, by Kummer’s test, if 1/(r — 1) < 0 we have divergence while if 1/(r — 1) > 0 we have
convergence. These are just the cases r > 1 and r < 1 of the ratio test.

2.6.10 Raabe’s Ratio Test

A simple variant on the ratio test is known as Raabe’s test. Suppose that

. a
lim LI
k—so00 Q11

so that the ratio test is inconclusive. Then instead compute

a
lim k ( LB 1) :
k—00 Q11
The series Y ;- ; aj converges or diverges depending on whether this limit is greater than or less
than 1.

(Raabe’s Test) The series > - ai can be tested by the following criterion. Compute

L= lim k< Ak —1).
k—o0 Aki1

Then
1. If L > 1, the series Y 7o | aj converges.
2. If L <1, the series Y2, ai diverges.
3. If L =1, the test is inconclusive.
Proof. This is Kummer’s test using the sequence Dy = k. O

Example 2.6.11. Consider the series

Z ekk!’

k=0
An attempt to apply the ratio test to this series will fail since the ratio will tend to 1, the inconclusive
case. But if instead we consider the limit

k() (Tt ) 1)

as called for in Raabe’s test, we can use calculus methods (L’Hopital’s rule) to obtain a limit of %
Consequently, this series diverges.
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2.6.11 Gauss’s Ratio Test

Raabe’s test can be replaced by a closely related test due to Gauss. We might have discovered

while using Raabe’s test that
lim k;( . —1> ~ L.
k—>00 Akt 1

This suggests that in any actual computation we will have discovered, perhaps by division, that

ay

L . . 1
=14 — + terms involving 2 etc.

Ak+1
The case L > 1 corresponds to convergence and the case L < 1 to divergence, both by Raabe’s
test. What if L = 1, which is considered inconclusive in Raabes test?
Gauss’s test offers a different way to look at Raabe’s test and also has an added advantage that
it handles this case that was left as inconclusive in Raabe’s test.

(Gausss Test) The series Y .-, ax can be tested by the following criterion. Suppose that

where ¢(k)(k =1,2,3,...) forms a bounded sequence. Then
1. If L > 1 the series ) -, aj converges.
2. If L <1 the series > ;2 aj, diverges.

Proof. As we noted, for L > 1 and L < 1 this is precisely Raabe’s test. Only the case L = 1 is

new! Let us assume that
L
(Zk+1 N k :ICQ

where {ay} is a bounded sequence.
To prove this case (that the series diverges) we shall use Kummer’s test with the sequence
Dy = klogk. We consider the expression

a
|:Dk B Dk:+1:| ;
Qk+1
which now assumes the form a
klog k—— — (k + 1) log(k + 1)
ag+1

1
=klogk <1+ k—I—Z;) — (k+1)log(k +1).

We need to compute the limit of this expression as k — oco. It takes only a few manipulations
(which we should try) to see that the limit is —1. For this use the facts that

(logk)/k — 0

and
(k+1log(14+1/k) — 1
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as k — oo.
We are now in a position to claim, by Kummer’s test, that our series Y -, ay diverges. To
apply this part of the test requires us to check that the series

> i
P klogk
diverges. Several tests would work for this. Perhaps Cauchys condensation test is the easiest to
apply, although the integral test can be used too. O
Note. In Gausss test we may be puzzling over how to obtain the expression
Q. .

Ak41 k k2

In practice often the fraction ay/agy1 is a ratio of polynomials and so usual algebraic procedures
will supply this. In theory, though, there is no problem. For any L we could simply write

amzﬁ<“k—1+L>

Ak+1 k

Thus the real trick is whether it can be done in such a way that the ¢(k) do not grow too large.
Also, in some computations we might prefer to leave the ratio as ak+1/ak the way it was for
the ratio test. In that case Gausss test would assume the form

Q1 L ¢(k)
—1-2 420
ay, k + k2

(Note the minus sign.) The conclusions are exactly the same.

Example 2.6.12. The series

-1
1+mx—|—m(n;)x2+
-1 -2 —1)... —k+1
mim = D(m=2) 5 | mlm =Dl k4D

is called the binomial series. When m is a positive integer all terms for k > m are zero and the
series reduces to the binomial formula for (14 z)™. Here now m is any real number and the hope
remains that the formula might still be valid, but using a series rather than a finite sum. This series
plays an important role in many applications. Let us check for absolute convergence at x = 1. We
can assume that m # 0 since that case is trivial.

If we call the absolute value of the k + 1st term aj so

m(m—1)...(m —k+1)
k41 = )

k!
then a simple calculation shows that for large values of k
Gkt _ 4 _ M +1
af k ’

Here we are using the version api1/ax rather than the reciprocal; see the preceding note.

There are no higher-order terms to worry about in Gausss test here and so the series Y ay
converges if m+1 > 1 and diverges if m+1 < 1. Thus the binomial series converges absolutely for
x =114 m>0. For m =0 the series certainly converges since all terms except for the first one
are identically zero. For m < 0 we know so far only that it does not converge absolutely. A closer
analysis, for those who might care to try, will show that the series is non absolutely convergent for
1 <m <0 and divergent for m < 1.
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2.6.12 Alternating Series Test

We pass now to a number of tests that are needed for studying series of terms that may change
signs. The simplest first step in studying a series Y ;°, a;, where the a; are both negative and
positive, is to apply one from our battery of tests to the series > -2 |a;|. If any test shows that
this converges, then we know that our original series converges absolutely. This is even better than
knowing it converges.

But what shall we do if the series is not absolutely convergent or if such attempts fail? One
method applies to special series of positive and negative terms. Recall how we handled the series

1 1 1 1
Z_ k-t _ L 1 1
kl( 2 k ! 2 3 47

(called the alternating harmonic series). We considered separately the partial sums sg, s4, sg, ...
and s1, s3, S5, .... The special pattern of + and — signs alternating one after the other allowed us
to see that each subsequence {sg,} and {s2,_1} was monotonic. All the features of this argument
can be put into a test that applies to a wide class of series, similar to the alternating harmonic series.

(Alternating Series Test) The series
oo
D (1),
k=1

whose terms alternate in sign, converges if the sequence {ar} decreases monotonically to zero.
Moreover, the value of the sum of such a series lies between the values of the partial sums at any
two consecutive stages.

Proof. The proof is just exactly the same as for the alternating harmonic series. Since the a; are
nonnegative and decrease, we compute that

ajaz = sz < 84 < 56 < - < 55 < 53 < 851 =ay.
These subsequences then form bounded monotonic sequences and so

lim s9, and lim s9,_1
n—m:oo n—m-:oo

exist. Finally, since
Sop — S2n—1 = —aG2n —> 0

we can conclude that lim,,_ . s, = L exists. From the proof it is clear that the value L lies in
each of the intervals [sa, s1], [s2, s3], [s4, 3], [$4, S5], ... and so, as stated, the sum of the series lies
between the values of the partial sums at any two consecutive stages. ]

2.6.13 Dirichlets Test

Our next test derives from the summation by parts formula

Zakbk = 51(by — b2) + s2(ba — b3) + -+ + sp—1(bp—1 — bn) + spbn
k=1
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We can see that if there is some special information available about the sequences {s,} and {b,}
here, then the convergence of the series > j_, arby can be proved. The test gives one possibility
for this. The next section gives a different variant.

The test is named after Lejeune Dirichlet (18051859) who is most famous for his work on Fourier
series, in which this test plays an important role.

(Dirichlet Test) If {b,} is a sequence decreasing to zero and the partial sums of the series
> pe aj are bounded, then the series Y_p°; aiby converges.

Proof. Write s, =Y ,_; ax. By our assumptions on the series Y p- ; ai there is a positive number
M so that |s,| < M for all n. Let € > 0 and choose N so large that b, < €¢/(2M) if n > N.
The summation by parts formula shows that for m >n > N

D arb

k=n

= ’anbn + an—i—lbn—i-l +---+ ambm|

= | = Sp—1bn + Sn(bn = bpy1) + - + Sm—1(bm—1 — b)) + Simbm|
< | = sn-1ba| + |sn(bn = b)) + - + [sm-1(bm—1 = b )| + [$mbm]
< M(by, + [by, — b)) + b)) < 2Mby, <e.
Notice that we have needed to use the fact that

br1br > 0

for each k. This is precisely the Cauchy criterion for the series Y7~ arby and so we have proved
convergence. ]

Example 2.6.13. The series

11 1 1 1
- 4+---+--2

2 3 4+5 6

converges by the alternating series test. What other pattern of + and — signs could we insert and
still have convergence? Let ap = x1. If the partial sums

n
D
k=1

remain bounded, then, by Dirichlets test, the series

n
a

k
k=1

must converge. Thus, for example, the pattern
tott—— o — -~

would produce a convergent series (that is not alternating).
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2.6.14 Abel’s Test

The next test is another variant on the same theme as the Dirichlet test. There the series
> poq agbr, was proved to be convergent by assuming a fairly weak fact for the series Y ;2 ay
(i.e., bounded partial sums) and a strong fact for {b;} (i.e., monotone convergence to 0). Here we
strengthen the first and weaken the second.

(Abel Test) If {b,} is a convergent monotone sequence and the series Y ;2 ; aj, is convergent,
then the series E,‘?’:l arby converges.

Proof. Suppose first that by is decreasing to a limit B. Then by — B decreases to zero. We can
apply Dirichlets test to the series

Z ak(bk — B)
k=1

to obtain convergence, since if Y ;7 | aj is convergent, then it has a bounded sequence of partial
sums.
But this allows us to express our series as the sum of two convergent series:

Zakbk = Zak(bk —B)+ BZak.
k=1 k=1 k=1

If the sequence by, is instead increasing to some limit then we can apply the first case proved to the
series — > 27 a(—bg). O

2.7 Rearrangements

[?]Any finite sum may be rearranged and summed in any order. This is because addition is
commutative. We might expect the same to occur for series. We add up a series ) -, ar by
starting at the first term and adding in the order presented to us. If the terms are rearranged into
a dierent order do we get the same result?

Example 2.7.1. The most famous example of a series that cannot be freely rearranged without
changing the sum is the alternating harmonic series. We know that the series

1 1+1 1
2 3 47

is convergent (actually non absolutely convergent) with a sum somewhere between 1/2 and 1. If we
rearrange this so that every positive term is followed by two negative terms, thus,

1 1 1+1 1 1+1 1 1
2 4 3 6 8 5 10 127

we shall arrive at o different sum. Grouping these and adding, we obtain

AN SNYA NS AU DA NS A
2 4 3 6 8 5 10 127"
11
2 2 3 477

whose sum is half the original series. Rearranging the series has changed the sum/!
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For the theory of unordered sums there is no such problem. If an unordered sum Zje 7
converges to a number ¢, then so too does any rearrangement. If ¢ : I — [ is one-to-one and onto,

then
D= ao)

i€l i€l

We had hoped for the same situation for series. If 0 : N — N is one-to-one and onto, then

DW= o
k=1 k=1

may or may not hold. We call > 72, ag(k) @ rearrangement of the series > pe Q.
We propose now to characterize those series that allow unlimited rearrangements, and those
that are more fragile (as is the alternating harmonic series) and cannot permit rearrangement.

2.7.1 Unconditional Convergence

A series is said to be unconditionally convergent if all rearrangements of that series converge
and have the same sum. Those series that do not allow this but do converge are called conditionally
convergent. Here the conditional means that the series converges in the arrangement given, but may
diverge in another arrangement or may converge to a different sum in another arrangement. We
shall see that conditionally convergent series are extremely fragile; there are rearrangements that
exhibit any behavior desired. There are rearrangements that diverge and there are rearrangements
that converge to any desired number.

Our first theorem asserts that any absolutely convergent series may be freely rearranged. All
absolutely convergent series are unconditionally convergent. In fact, the two terms are equivalent

unconditionally convergent <= absolutely convergent
although we must wait until the next section to prove that.
Theorem 2.7.2. (Dirichlet) Fvery absolutely convergent series is unconditionally convergent.

Proof. Let us prove this first for series > - ; a; a whose terms are all non negative. For such series
convergence and absolute convergence mean the same thing.

Let > 22, ag(k) be any rearrangement. Then for any M

M N 0o
oy <D ar <Y
k=1 k=1 k=1

by choosing an N large enough so that {1, 2,3, ..., N} includes all the integers {o(1),0(2),0(3),...,0(M)}.
By the bounded partial sums criterion this shows that Y .-, ag(k) 1s convergent and to a sum
smaller than )77, ax. But this same argument would show that > 77 | ax is convergent and to a
sum smaller than )7, ag(k) and consequently all rearrangements converge to the same sum.

We now allow the series Y 7 ; aj to have positive and negative values.

Write - - -
Doar= [a]" =) [ax]”
k=1 k=1 k=1

where we are using the notation

[X]T = max{X,0} and [X] = max{X,0}
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and remembering that
X =[X]"[X]" and |X|=[X]"+[X]".

Any rearrangement of the series on the left-hand side of this identity just results in a rearrangement
in the two series of non negative terms on the right. We have just seen that this does nothing to
alter the convergence or the sum. Consequently, any rearrangement of our series will have the same
sum as required to prove the assertion of the theorem. O

2.7.2 Conditional Convergence

A convergent series is said to be conditionally convergent if it is not unconditionally convergent.
Thus such a series converges in the arrangement given, but either there is some rearrangement
that diverges or else there is some rearrangement that has a different sum. In fact, both situations
always occur.

We shall show that any non absolutely convergent series has this property. Our previous rear-
rangement took advantage of the special nature of the series; here our proof must be completely
general and so the method is different.

The following theorem completes Theorem 3.48 and provides the connections:

conditionally convergent <= nonabsolutely convergent
and
unconditionally convergent <= absolutely convergent

Note. we may wonder why we have needed this extra terminology if these concepts are iden-
tical. One reason is to emphasize that this is part of the theory. Conditional convergence and
nonabsolutely convergence may be equivalent, but they have different underlying meanings. Also,
this terminology is used for series of other objects than real numbers and for series of this more
general type the terms are not equivalent.

Theorem 2.7.3. (Riemann) Every nonabsolutely convergent series is conditionally convergent.
In fact, every nonabsolutely convergent series has a divergent rearrangement and can also be rear-
ranged to sum to any preassigned value.

Proof. Let > 72, be an arbitrary nonabsolutely convergent series. To prove the first statement it
is enough if we observe that both series

Z[ak]+ and Z[ak]_
= k=1

k=1

must diverge in order for ) .~ ax to be nonabsolutely convergent. We need to observe as well that
ar —> 0 since the series is assumed to be convergent.

Write p1, p2, p3, for the sequence of positive numbers in the sequence {ay} (skipping any zero or
negative ones) and write q1, g2, g3, ... for the sequence of terms that we have skipped. We construct
a new series

P1+p2+ +Dn +q1 +DPng+1 P42+ +Pny + Q2+ Prgt1--

where we have chosen 0 = ng < ni; < ng < ns... so that

pnkJrl +pn1+2 + ... +pnk+1 > 2k
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for each k = 0,1,2,.... Since Y ,o, pi diverges, this is possible. The new series so constructed
contains all the terms of our original series and so is a rearrangement. Since the terms ¢ — 0,
they will not interfere with the goal of producing ever larger partial sums for the new series and
so, evidently, this new series diverges to oc.

The second requirement of the theorem is to produce a convergent rearrangement, convergent
to a given number . We proceed in much the same way but with rather more caution. We leave
this to the exercises. ]

2.7.3 Comparison of Y ° a; and >

1€N

The unordered sum of a sequence of real numbers, written as,
§ ag,

i€EN

has an apparent connection with the ordered sum

00
E a;.
i=1

We should expect the two to be the same when both converge, but is it possible that one converges
and not the other?
The ansour is that the convergence of ) . ya; is equivalent to the absolute convergence of

D isy i

Theorem 2.7.4. A necessary and sufficient condition for ) . a; to converge is that the series
Yoo, a; is absolutely convergent and in this case

Su=Ye
i€N i=1
Proof. We shall use a device we have seen before a few times: For any real number X write
[X]* = max{X,0} and [X] = max{-X,0}
and note that
X =[X]T"[X]" and |X|=[X]T+[X]".

The absolute convergence of the series and the convergence of the sum in the statement in the
theorem now reduce to considering the equality of the right-hand sides of

D ai=) lal" = lail”

ieN €N ieN
and
oo
Z%—Z% =2 lail”
=1 =1

This reduces our problem to cons1der1ng just nonnegative series (sums). Thus we may assume that
each a; > 0. For any finite set I C N it is clear that

Zal <Zal

el
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It follows that if Y °>°; a; converges, then so too does Y, a; and

IV SR
€N
Similarly, if N is finite,

Dl
i€eN
It follows that if ), a; converges, then, by the boundedness criterion, so too does ) . a; and

Z a; < Z a;. (7)
1EN

Together these two assertions and the equations (6) and (7) prove the theorem for the case of non
negative series (sums).

O
2.8 Products of Series

[M]The rule for the sum of two convergent series

Z(ak+bk Zak—l-Zbk
k=0 k=0

is entirely elementary to prove and comes directly from the rule for limits of sums of sequences. If
A, and B, represent the sum of n + 1 terms of the two series, then

o0

lim (ak + bk) =
n—»o0

lim (A4, + B,)= lim A,+ lim B,
n—ao0

n—>o0
k=0

oo oo
Z ar + Z by
k=0 k=0

At first glance we might expect to have a similar rule for products of series, since

n——aoo

lim (4, x B,) = lim A, x lim B,
n—-aoo n—-oo n—

oo oo
= Z ap X Z bk.
k=0 =0
But what is A, B,? If we write out this product we obtain

Aan:(GO‘l‘CLl+a2+"'+an)(bo+b1+b2+--~—|—bn)

n n
=D > aib;
i=0 j=1
From this all we can show is the curious observation that

nl'inOOZZalb —Zak X Zbk

=0 j=1

What we would rather see here is a result similar to the rule for sums
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"series + series = series."
Can this result be interpreted as
"series x series = series?"

We need a systematic way of adding up the terms a;b; in the double sum so as to form a series.
The terms are displayed in a rectangular array in Figure 3.3.

If we replace the series here by a poour series, this systematic way will become much clearer.
How should we add up

(ap + a1z + aga® + - - - + apx™)(bo + b1z + bz + - - + byz™)

X an 1 [155) a3 a4 as
bo [ aobo arbo azxby asbo asbo asbo
b]_ (1[]?)1 /5] bl ﬂ-gb]_ (l.;;b]_ [143)1 (I-5b1
b;g (1(]!‘)2 ay bz a-gb;g a,;;bg (14!‘)2 a.562
by | agbs aibs azbs asbs asbs asbs
by apbys aiby asby azby asbs asby
ba {1[13)5 11 b-s ﬂ-gba a:;bﬁ E14b5 CI-:'JbS

Figure 3.3. The product of the two series Y ;" ar and Y " bg.
(which with x = 1 is the same question we just asked)? The now obvious ansour is
aobo + (apby + a1bo)x + (agbs + arby + asbg)z?
+(aobs + a1by + azby + agbo):c3 + ...

Notice that this method of grouping the terms corresponds to summing along diagonals of the
rectangle in Figure 3.3.
This is the source of the following definition.

Definition 2.8.1. The series

1s called the formal product of the two series
oo oo
Zak and Z bi
k=0 k=0
provided that
k
Cr — Z aibk_i.
=0

Our main goal now is to determine if this "formal" product is in any way a genuine product;

that is, if
o0 (0.9} o0
ch = Zak X Zbk
k=0 k=0 k=0

The reason we expect this might be the case is that the series Y, c; contains all the terms in
the expansion of
(ap+a1+ag+as+..)(bo+ b1 + b+ b3+ ...).

A good reason for caution, however, is that the series )~ c; contains these terms only in a
particular arrangement and we know that series can be sensitive to rearrangement.
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2.8.1 Products of Absolutely Convergent Series

It is a general rule in the study of series that absolutely convergent series permit the best
theorems. We can rearrange such series freely as we have seen already in Section 2.7.1. Now we
show that we can form products of such series. We shall have to be much more cautious about
forming products of nonabsolutely convergent series.

Theorem 2.8.2. (Cauchy) Suppose that Y, ¢y is the formal product of two absolutely conver-

gent series
o0 o0
Z ap and Z by..
k=0 k=0

Then Y pe ¢k converges absolutely too and

[e.9] oo

o0

ch = Zak X Zbk

k=0 k=0 k=0
Proof. We write

o0 o0 n
/
A= § ag, A = E lak|, An = § ar,
k=0 k=0 k=0

B:ibk,B':i\bk], and Bn:f:bk.
k=0 k=0 k=0

By definition
k
cr =Y b
i=0

and so

N N k N N

> et 33ttt < () (il ) < 45

k=0 k=0 i=0 i=0 i=0
Since the latter two series converge, this provides an upper bound A B’ for the sequence of partial
sums Y p_; |cx| and hence the series 35° ;¢ converges absolutely.

Let us recall that the formal product of the two series is just a particular rearrangement of the
terms a;b; taken over all ¢ > 0, j > 0. Consider any arrangement of these terms. This must form an
absolutely convergent series by the same argument as before since A'B’ will be an upper bound for
the partial sums of the absolute values |a;a;|. Thus all rearrangements will converge to the same
value.

We can rearrange the terms a;b; taken over all ¢ > 0,5 > 0 in the following convenient way "by
squares." Arrange always so that the first (m + 1)2(m = 0,1,2,...) terms add up to A, B,,. For
example, one such arrangement starts off

apbg + a1bg + agbr + a1b1 + asbg + asbr + agbs + a1be + agbs + ...

(A picture helps considerably to see the pattern needed.) We know this arrangement converges and
we know it must converge to

lim A,,B, = AB.

m—ro0

In particular, the series >~ 77 ¢ which is just another arrangement, converges to the same number
AB as required. 0
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It is possible to improve this theorem to allow one (but not both) of the series to converge
nonabsolutely. The conclusion is that the product then converges (perhaps nonabsolutely), but
different methods of proof will be needed. As usual, nonabsolutely convergent series are much
more fragile, and the free and easy moving about of the terms in this proof is not allowed.

2.8.2 Products of Nonabsolutely Convergent Series

Let us give a famous example, due to Cauchy, of a pair of convergent series whose product
diverges. We know that the alternating series

o0
>V
P k+1
is convergent, but not absolutely convergent since the related absolute series is a p-harmonic series
with p = %

Let

o
> c
k=0
be the formal product of this series with itself. By definition the term ¢ is given by

1 1

1 1
\/1'(k:+1)+\/2-(l<:)+\/3-(k:—1)+m+«/(k+1)'1 '

There are k 4+ 1 terms in the sum for ¢, and each term is larger than 1/(k 4+ 1) so we see that
|ck| > 1. Since the terms of the product series Y 7 ¢, do not tend to zero, this is a divergent
series.

This example supplies our observation: The formal product of two non absolutely convergent
series need not converge. In particular, there may be no convergent series to represent the product

o0 o0
Sax S
k=0 k=0

for a pair of nonabsolutely convergent series. For absolutely convergent series the product always
converges.

We should not be too surprised at this result. The theory begins to paint the following picture:
Absolutely convergent series can be freely manipulated in most ways and nonabsolutely convergent
series can hardly be manipulated in general in any serious manner. Interestingly, the following
theorem can be proved that shows that even though, in general, the product might diverge, in
cases where it does converge it converges to the "correct" value.

(-1)*

Theorem 2.8.3. (Abel) Suppose that > ;- is the formal product of two nonabsolutely convergent
series Y oo ar and Yoo by and suppose that this product Yy ¢y is known to converge. Then

o0 oo

00
E C = E ar X E bk.
k=0 k=0 k=0

Proof. The proof requires more technical apparatus and will not be given until Section 2.9.2. [
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2.9 Summability Method

A first course in series methods often gives the impression of being obsessed with the issue
of convergence or divergence of a series. The huge battery of tests in Section 2.6 devoted to
determining the behavior of series might lead one to this conclusion. Accordingly, we may have
decided that convergent series are useful and proper tools of analysis while divergent series are
useless and without merit.

In fact divergent series are, in many instances, as important or more important than convergent
ones. Many eighteenth century mathematicians achieved spectacular results with divergent series
but without a proper understanding of what they oure doing. The initial reaction of our founders
of nineteenth-century analysis (Cauchy, Abel, and others) was that valid arguments could be based
only on convergent series. Divergent series should be shunned. They oure appalled at reasoning
such as the following: The series

s=1-14+1-1..

can be summed by noting that
s=1-(1-1+1—-..)=1-5

and so 2s=1or s = % But the sum % proves to be a useful value for the "sum" of this series even
though the series is clearly divergent.

There are many useful ways of doing rigorous work with divergent series. One way, which we
now study, is the development of summability methods.

Suppose that a series Y~ aj diverges and yet we wish to assign a "sum" to it by some method.
Our standard method thus far is to take the limit of the sequence of partial sums. We write

n
Sp — E Q.
k=0

and the sum of the series is lim,,— . S,. If the series diverges, this means precisely that this
sequence does not have a limit. How can we use that sequence or that series nonetheless to assign
a different meaning to the sum?

2.9.1 Cesaro’s Method

An infinite series ) .~ ax has a sum S if the sequence of partial sums
n
N
k=0

converges to S. If the sequence of partial sums diverges, then we must assign a sum by a different
method. We will still say that the series diverges but, nonetheless, we will be able to find a number
that can be considered the sum.

We can replace lim,,__, s, which perhaps does not exist, by

. Sotsit+s2t--+ sy
lim
n—s00 n-+1

=C

if this exists and use this value for the sum of the series. This is an entirely natural method since
it merely takes averages and settles for computing a kind of "average" limit where an actual limit
might fail to exist.

For a series Y - aj often we can use this method to obtain a sum even when the series diverges.
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Definition 2.9.1. If {s,} is the sequence of partial sums of the series y o, aj and

. Sop+Ss1+S2+--+ s,
lim
n—>o00 n+1

=C

then the new sequence
S0+ S1+ syt -+ sy

n =
n+1
is called the sequence of averages or Cesaro means and we write

o
Zak =C [Cesdro].

k=0

Thus the symbol [Cesaro| indicates that the value is obtained by this method rather than by the
usual method of summation (taking limits of partial sums). The method is named after Ernesto
Cesaro (1859-1906).

Our first concern in studying a summability method is to determine whether it assigns the
"correct" value to a series that already converges. Does

Yorpar =A== > 7" a; = A [Cesaro]?

Any method of summing a series is said to be regular or a regular summability method if this is
the case.

Theorem 2.9.2. Suppose that a series > ;- ax converges to a value A. Theny ;> qjap = A [Cesro]
is also true.

Proof. For any sequence {s,} write

In that exercise we showed that

lim infs, < lim info, < lim supo, < lim sups,.
n—oo n—roo n—oo n—~oo

If we skipped that exercise, here is how to prove it. Let

B> lim sups,.

n——aoo

(If there is no such 3, then lim,,_,~ sup s, = co and there is nothing to prove.) Then s, <  for
all n > N for some N. Thus

1 n—N+1

O'nS*(
mn n

for all n > N. Fix N, allow n — oo, and take limit superiors of each side to obtain
lim supo, < 6.
n—:oo

It follows that

lim supo, < lim sup sy.
n—a~oo n——~oo

The other inequality is similar. In particular, if lim, . S, exists so too does lim,_ .., o, and
they are equal, proving the theorem. O
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Example 2.9.3. As an example let us sum the series
1—-14+1-1+1-1....

The partial sums form the sequence 1,0,1,0, ..., which evidently diverges. Indeed the series diverges
merely by the trivial test: The terms do not tend to zero. Can we sum this series by the Cesdro
summability method? The averages of the sequence of partial sums is clearly tending to % Thus

S =

k=0

we can write

[Cesdro]

N | =

even though the series is divergent.

2.9.2 Abel’s Method

We require in this section that we recall some calculus limits. We shall need to compute a limit

lim F(z)

r—1—

for a function F' defined on (0,1) where the expression x — 1— indicates a left-hand limit. We
present a full account of such limits; here we need remember only what this means and how it is
computed.

Suppose that a series Y ;- aj diverges and yet we wish to assign a "sum" to it by some other
method. If the terms of the series do not get too large, then the series

F(x) = Z ap”
k=0

will converge (by the ratio test) for all 0 < z < 1. The value we wish for the sum of the series
would appear to be F(1), but for a divergent series inserting the value 1 for = gives us nothing we
can use. Instead we compute

lim F(z)= xEH, Zakxk =A
k=0

r—1—

and use this value for the sum of the series.

Definition 2.9.4. We write -
Zakmk =A [Abell]
k=0

Here the symbol [Abel] indicates that the value is obtained by this method rather than by the
usual method of summation (taking limits of partial sums).

As before, our first concern in studying a summability method is to determine whether it assigns
the "correct" value to a series that already converges. Does

oo 0.)
dap=A=> ar=A [Abel]?
k=0 k=0
We are asking, in more correct language, whether Abel’s method of summability of series is regular.

40



Theorem 2.9.5. (Abel) Suppose that a series Y ;- ax converges to a value A. Then

Proof. Our first step is to note that the convergence of the series )7~ aj requires that the terms
arp —> 0. In particular, the terms are bounded and so the root test will prove that the series
S22 g agx® converges absolutely for all |z| < 1 at least. Thus we can define

F(x) = Z apa”
k=0

for 0 <z < 1.
Let us form the product of the series for F(z) with the geometric series
1

—1l4+az+a®+23+ ..
1—=x

Since both series are absolutely convergent for any 0 < z < 1, we obtain

F(z)
— k
11— o —Z(ao—l—a1+a2+---+ak)m :
k=0
Writing
sp=(ao+a1+ag+---+ag)
and using the fact that
[e.e]
S — A= Z ag,
k=0
we obtain - -
Fla)=(1-2)) s’ =A—(1-2)) (sp — A)a*.
k=0 k=0
Let € > 0 and choose N so large that
|SkA‘ < 6/2

for kK > N. Then the inequality

N
|F(z) = Al < (1—2) ) [sp — Al2" +¢/2
k=0
holds for all 0 < 2 < 1. The sum here is just a finite sum, and taking limits in finite sums is routine:

N
lim (1—z)Y (s —A)z*=0.

r—1—
k=0

Thus for = < 1 but sufficiently close to 1 we can make this smaller than €¢/2 and conclude that

|F(z) — Al <e.
We have proved that
lim F(zx)=A
r—1—
and the theorem is proved. O
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Example 2.9.6. Let us sum the series

o0
d(DF=1-141-1+1-1..

k=0
by Abel’s method. We form
- 1
F(z) =Y (~1)kz* =
0 =31t =

obtaining the formula by recognizing this as a geometric series. Since

_ 1
) =5
we have proved that
= 1
> (-1)F = 5 [Abel].
k=0

Recall that we have already obtained that
[e) N 1 \
Z(—l) =3 [Cesaro]

so these two different methods have assigned the same sum to this divergent series. we might wish
to explore whether the same thing will happen with all series.

Theorem 2.9.7 ((Abel)). Suppose that > ;- cx is the formal product of two convergent series
Y oreoar and Y2 o by and suppose that Y .2 ¢y is known to converge. Then

o0 (0.9} (o.9)
Z C = Z ap X bk.
k=0 k=0 k=0

Proof. The proof just follows on taking limits as * — 1— in the expression

o0 o0 o0
chl‘k = Zakwk X Zbkmk.
k=0 k=0 k=0

Abel’s theorem, allows us to do this. How do we know, however, that this identity is true for all
0 <z < 17 All three of these series are absolutely convergent for |z| < 1 and, absolutely convergent
series can be multiplied in this way. O

2.10 More on Infinite Sums

How should we form the sum of a double sequence {a;;} where both j and k& can range over all
natural numbers? In many applications of analysis such sums are needed. A variety of methods
come to mind:

1. We might simply form the unordered sum

> o

(j,k)eNXN
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2. We could construct "partial sums" in some systematic method and take limits just as we do

for ordinary series:
N N
lim g E ik
N—o0 J

j=1k=1
These are called square sums and are quite popular. If we sketch a picture of the set of points
{(,k):1<j<N,1<k<N}
in the plane the square will be plainly visible.
3. We could construct partial sums using rectangular sums:
M N
lim Z Z k.

M,N—>o0 4
Jj=1k=1

Here the limit is a double limit, requiring both M and N to get large.
If we sketch a picture of the set of points

{(,k):1<j<M,1<k<N}
in the plane we will see the rectangle.
4. We could construct partial sums using circular sums:
lim ™
R—> 00 E: ik
ﬂ+W§R2
Once again, a sketch would show the circles.
5. We could "iterate" the sums, by summing first over j and then over k:
[e.e] oo
PIPBLT:
j=1 k=1
or, in the reverse order,
oo o
PIPILTE
k=1 j=1

Our experience in the study of ordinary series suggests that all these methods should produce
the same sum if the numbers summed are all nonnegative, but that subtle differences are likely to
emerge if we are required to add numbers both positive and negative.

In the exercises there are a number of problems that can be pursued to give a flavor for this
kind of theory. At this stage in our studies it is important to grasp the fact that such questions
arise. Later, when we have found a need to use these kinds of sums, we can develop the needed
theory. The tools for developing that theory are just those that we have studied so far in this work.
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2.11 Infinite Products

[MIn this work we studied, quite extensively, infinite sums. There is a similar theory for infinite
products, a theory that has much in common with the theory of infinite sums. In this section we
shall briefly give an account of this theory, partly to give a contrast and partly to introduce this
important topic.

Similar to the notion of an infinite sum

(o]
Zan:a1+a2+a3+a4+...

n=1

is the notion of an infinite product

0o
Hpn:pl X P2 X Pp3 X pg X ...

n=1

with a nearly identical definition. Corresponding to the concept of "partial sums" for the former
will be the notion of "partial products" for the latter.

The main application of infinite series is that of series representations of functions. The main
application of infinite products is exactly the same. Thus, for example, in more advanced material
we will find a representation of the sin function as an infinite series

sinx =x — lx?’ + lx5 — lx7

3! 5! 7!

and also as an infinite product

2 2 2 2
. X xr x X

The most obvious starting point for our theory would be to define an infinite product as the
limit of the sequence of partial products in exactly the same way that an infinite sum is defined
as the limit of the sequence of partial sums. But products behave differently from sums in one
important regard: The number zero plays a peculiar role. This is why the definition we now give is
slightly different than a first guess might suggest. Our goal is to define an infinite product in such
a way that a product can be zero only if one of the factors is zero (just like the situation for finite
products).

Definition 2.11.1. Let {by} be a sequence of real numbers. We say that the infinite product
[e.@]
[ ¢
k=1

converges if there is an integer N so that all by # 0 for k > N and if

M
lim H by,
M—0c0
k=N-+1

exists and is not zero. For the value of the infinite product we take

fe'e) M
IT o = b1 x by x ..by x i II
k=1 k=N+1
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This definition guarantees us that a product of factors can be zero if and only if one of the
factors is zero. This is the case for finite products, and we are reluctant to lose this.

Theorem 2.11.2. A convergent product

B0
k=1

if and only if one of the factors is zero.
Proof. This is built into the definition and is one of its features. O

We expect the theory of infinite products to evolve much like the theory of infinite series. We
recall that a series Y ,_; ai, could converge only if a — 0. Naturally, the product analog requires
the terms to tend to 1.

Theorem 2.11.3. A product
o0
[ e
k=1
that converges necessarily has by — 1 as k — oo.

Proof. This again is a feature of the definition, which would not be possible if we had not handled
the zeros in this way. Choose N so that none of the factors by, is zero for k£ > N. Then
n
_ b
b= fim L=nabh

n—1
n=—00 [Ny Ok

as required. ]

As a result of this theorem it is conventional to write all infinite products in the special form

e}

[T+ an)

k=1

and remember that the terms ap — 0 as k — oo in a convergent product. Also, our assumption
about the zeros allows for a; = —1 only for finitely many values of k. The expressions (1 + ay) are
called the "factors" of the product and the aj; themselves are called the "terms."

A close linkage with series arises because the two objects

o o
Zak and H(l—l—ak),
k=1 k=1

the series and the product, have much the same kind of behavior.

Theorem 2.11.4. A product

e}

[T +ar

k=1

where all the terms ay, are positive is convergent if and only if the series >, ap converges.
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Proof. Here we use our usual criterion that has served us through most of this work: A sequence
that is monotonic is convergent if and only if it is bounded.
Note that

ai+ar+az+---+a, < (1+a)(l+a2)(l+as) x- - x(1+ay)

so that the convergence of the product gives an upper bound for the partial sums of the series. It
follows that if the product converges so must the series.
In the other direction we have

(1 +CL1)(1 +a2)(1 +a3) N, (1 +an) < ea1+a2+a3+...+an

and so the convergence of the series gives an upper bound for the partial products of the infinite
product. It follows that if the series converges, so must the product. O
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3

Thesis Summary and Future Work

3.1 Thesis Summary

In mathematics, real analysis is the branch of mathematical analysis that studies the behavior
of real numbers, sequences and series of real numbers, and real functions. And in this work we
have studied one of them in detail, namely infinite sums.

We explored almost all parts of the basic concepts in the infinite sums. Firstly, we began
our studies with finite sums that talking about Euler’s notation and types of finite sums such as
Telescoping Sums, Geometric Progressions, and Summation By Parts. Secondly, we studied infinite
unordered sums, especially, about Cauchy criterion. And next section, we studied diverse properties
of series and also some special series. After that we studied important criterion for convergence
such as boundedness criterion, Cauchy criterion, and absolute convergence.

Furthermore, we studied tests for convergence and it is a special section in this work. We tried
to include many remarkable tests to check whether series will be convergence or not. And these
are fourteen tests as we have studied so for.

Additionally, we further studied rearrangements such as unconditional convergence, conditional
convergence, and comparison of » > a; and Y ien @i- In times, we keep doing about products of
series that divide two subsections such as products of absolutely convergent series and products of
nonabsolutely convergent series.

Finally, we discussed summability method (Cesaro’s method and Abel’s method). We also
would like to know more about infinite sums and infinite products.

3.2 Future Work

There are many more interesting parts I am passionate about learning in mathematical analysis.
In the future, I am hoping to experience continuous functions, differentiations, and integrals and
trying to find some connections between them.
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